Chem 5210 – Materials Characterization – Learning Objectives

Introduction to Materials Characterization and Important Background Concepts

- Understand the concepts of unit cells, unit cell parameters, and fractional coordinates
- Know the meaning of the 14 Bravais lattices
- Understand close-packing
- Understand the concept of Miller indices and assign Miller indices to lattice planes in unit cells
- Understand and apply the relationship between *d*-spacings, unit cell parameters, and Miller indices

Powder X-ray Diffraction (XRD)

- Know the various application of powder XRD: what can be learned by this method?
- Understand the processes involved in the generation of X-rays
- Be familiar with the components of a powder X-ray diffractometer and their functions
- Know the features of a powder pattern (position, intensity, linewidth of peaks) and how a 1D pattern relates to a 2D pattern
- Derive and apply Bragg's law
- XRD patterns of crystalline vs. non-crystalline materials
- Know typical penetration depths and detection limits of XRD
- Understand the steps needed to identify composition of samples by powder XRD (manually and with automatic software)
- Become familiar with features of the ICDD data base
- Know how to index simple powder patterns and use them to determine unit cell parameters
- Be aware of potential pitfalls when indexing patterns
- Understand systematic absences and how these are used to determine lattice types
- Understand the differences between XRD patterns of physical mixtures and solid solutions
- Use Vegard's law to predict lattice parameters of solid solutions
- Understand the concept of superstructures and their effects on powder patterns
- Understand the factors contributing to peak intensities
 - Multiplicities
 - Structure factor
 - Form factor
 - Temperature factor
 - Polarization factor
 - Lorentz factor
 - X-ray absorption
 - Various instrumental factors
- Understand the concept of preferred orientation, its implication, and how to deal with it
- Understand the causes of line broadening and what can be learned from line broadening about the sample
 - grain size effects (Scherrer equation)
 - o non-uniform stresses on particles
- Know the steps involved in Rietveld refinement procedures
- Be able to interpret XRD patterns from the literature

Small-angle X-ray Scattering (SAXS)

- Know the various application of SAXS: what information can be gained from this method?
- Understand the scattering processes and the definition of scattering vector (similar to Bragg's law but in reciprocal space)
- Be familiar with the components of the SAXS instrument and their roles
- Understand the data workflow (2D \rightarrow 1D, background correction)
- Know the information gained from the various regions in the scattering plot
 - Guinier plot, radius of gyration, particle shape
 - Fourier, cross-section structure & shape, pair-distance distribution functions
 - Porod, surface per volume
- Understand the roles of structure factor and form factor in the different models
 - Dilute particles
 - Concentrated particles
 - Periodic systems
- Understand the effects of contrast and contrast matching in multi-phase systems
- Know about the implications of volume effects on scattering intensity
- Learn how to interpret and apply SAXS data from the literature

Grazing-incidence Small-angle X-ray Scattering (GISAXS)

- Understand the difference between SAXS and GISAXS
- Know which types of materials systems are most applicable for analysis by GISAXS
- Know the information that can be obtained from GISAXS for those systems

Neutron Diffraction (ND)

- Understand the differences in interactions between neutrons and matter vs. X-rays and matter
- Know which types of materials systems are most applicable for analysis by ND
- Know the information that can be obtained from ND for those systems and what is complementary to information obtained by XRD
- Understand the concept of time-of-flight analysis
- Understand the difference between chemical structure and magnetic structure

Electron Diffraction (ED) – Brief comparison to XRD & ND (more later in TEM lectures)

- Know which types of materials systems are most applicable for analysis by ED
- Know the advantages and disadvantages of using ED vs. XRD vs. ND
- Identify unit cell information from ED patterns for simple structures
 - Orientation
 - Crystallinity
 - Unit cell size
 - Crystal system from systematic absences

Microscopy Concepts

- Know the differences in typical magnification, resolution, and general sample requirements for optical microscopy, SEM, TEM, and X-ray microscopy and their respective advantages/disadvantages
- Know the components their functions of the following types of optical microscope:
 - Conventional microscope
 - bright field
 - dark field
 - Inverted microscope
 - Phase contrast microscope
 - o Differential interference contrast microscope
 - Polarized light microscope
 - Confocal microscope
- Understand sample preparation methods needed for the different types of optical microscopy
- Understand the following concepts used in microscopy
 - Magnification
 - Field of view
 - Depth of field
 - Numerical aperture
 - Resolution

٠

- Understand the different types of lens aberrations and methods of correcting for these
 - Spherical aberration
 - Chromatic aberration
 - o Astigmatism
- Understand the ways of achieving and enhancing contrast by the different optical microscopy methods listed above
- Understand the concepts relevant to digital microscopy
 - Nyquist sampling
 - Bit depth
 - Lossy vs. lossless file formats
 - Histograms and look-up tables
 - Grayscale vs. color
 - o Image enhancement and ethical considerations
- Know how to analyze and critique optical microscopy images from the literature

Scanning Electron Microscopy (SEM)

- Know the various application of SEM: what information can be gained from this method?
- Know the critical limitations of SEM: resolution, magnification, sampling region
- Understand what the SEM can and cannot do
- Understand the different types of beam interactions with the sample
- Understand the structure of an SEM and the role of each component and how the component works
 - Electron gun
 - Thermionic emission
 - Field emission
 - Schottky emission
 - Vacuum system and water chilling system
 - o Column
 - Electromagnetic lenses (condenser, objective)
 - Apertures
 - Deflection coils
 - Specimen chamber
 - Detectors
 - Secondary electrons
 - Backscattered electrons
 - X-ray detector (EDS)
 - Cathodoluminescence
 - Imaging system
- Understand sample preparation requirements and methods
- Understand how the different instrumental parameters affect the image quality (contrast, brightness, S/N, resolution, depth of field, depth of sampling, magnification)
 - Acceleration voltage
 - o Aperture
 - o Focus
 - Spot size (probe size)
 - Working distance
 - Scanning area
 - Scan rate
- Understand the different types of image artifacts and methods of correcting for these
 - o Astigmatism
 - Edge effects
 - o Charging
 - Specimen damage
 - Beam-related contamination
 - Be aware of specialized SEM techniques and their applications
 - o Environmental SEM
 - o Cryo SEM
 - Electron backscatter diffraction (EBSD)
 - Electron channeling contrast imaging (ECCI)
 - \circ $\;$ Electron beam lithography (EBL) and focused ion beam (FIB) lithography
- Know how to analyze and critique SEM images from the literature

Energy-Dispersive Spectroscopy (EDS)

- Understand the purpose and general applications of EDS
 - Understand the mechanistic processes involved in EDS
 - Continuum X-rays vs. characteristic X-rays
 - Siegbahn notation
 - The EDS spectrum
- Understand the critical components of an EDS system and each of their functions
 - X-ray generation (discussed earlier in course)
 - o EDS detectors and detection processes
 - Pulse processor
 - Multi-channel analyzer
- Understand what can be learned from qualitative EDS and what are the limitations
 - Interpretation of EDS spectra
 - X-ray peak identification
 - X-ray intensity
 - Spectral resolution
 - Spectral artifacts
 - Peak identification and peak misidentification
- Understand the steps in obtaining reliable quantitative EDS data
 - Optimal instrument parameters
 - Sample preparation
 - Spectral processing
 - Concentration calculations
 - ZAF corrections
 - o Accuracy, precision, and detection limits
 - Errors in EDS analysis
- Understand the concepts involved in X-ray Mapping
 - Elemental maps
 - Parameters for X-ray mapping
 - Artifacts in elemental maps

X-ray Photoelectron Spectroscopy (XPS)

- Understand that XPS is a surface analysis technique and know the limitations of XPS (depth of analysis, spatial resolution)
- Understand what information can be obtained from XPS
 - o Elemental identity
 - Chemical state
 - Quantity of elements
 - Spatial distribution when scanning (mapping)
 - Depth distribution when ion milling or using angle-resolved XPS
- Understand the critical components of an XPS system and each of their functions
- Understand the processes involved in photoelectron generation and the associated energies
 - binding energy
 - kinetic energy
 - o photon energy
 - \circ work function
- Know the typical workflow of XPS analysis
- Understand XPS spectra
 - o Survey scans
 - High resolution scans
- Know what is involved in quantitative XPS analysis
- Understand final state effects and recognize the corresponding spectral features
 - Shake-up satellite peaks
 - Spin-orbit coupling
 - Auger electrons
 - Multiplet splitting
- Be aware of complications in XPS
- Know the information obtainable from angle-resolved XPS
- Know how to interpret XPS data from the literature
- Know the differences in limitations of XPS vs. EDS

Transmission Electron Microscopy (TEM)

- Understand what TEM can and cannot do
- Understand the electron beam interactions with the specimen
- Understand the components of a TEM and their functions
 - Electron gun
 - Electron column
 - Electromagnetic lens system with aperatures
 - Specimen chamber
 - Image capturing system
 - Detectors
 - Vacuum system (see section on SEM)
- Understand the image formation mechanism at various points in the column
 - Back focal plane (diffraction)
 - Image plane (imaging)
 - Bright-field images
 - Dark-field images
 - Phase-contrast imaging
- Understand the different mechanisms of obtaining contrast
 - Phase contrast
 - Amplitude contrast
 - Mass contrast
 - Diffraction contrast
- Understand the process of obtaining electron diffraction patterns, including selected-area electron diffraction (SAED) and convergent beam electron diffraction (CBED)
- Be able to interpret electron diffraction patterns (see earlier section on diffraction methods)
- Know the processes involved in instrument alignment to obtain better images
 - Condenser lens centering
 - Condenser lens stigmation
 - Eucentric position
 - o Focus
 - Objective apertures
 - Objective lens astigmatism correction
- Understand how different parameters affect the image
 - o Voltage
 - Condensor aperture size
 - Objective aperture size
 - Spot size
- Understand the operation and applications of scanning transmission electron microscopy (STEM)
- Understand the operation and applications of high-angle-annular dark-field (HAADF) STEM
- Be familiar with specimen preparation methods and requirements
- Be aware of specialized TEM methods
 - Liquid cell TEM
- Be aware of image artifacts and how to deal with them
 - Artifact introduced during sample preparation
 - Beam damage

- Spherical aberration, chromatic aberration, astigmatism (Aberration-Corrected TEM)
- Understand the application of EDS in TEM and know the differences compared to EDS in SEM
- Understand the purpose, general applications, and operating principles of electron energy loss spectroscopy (EELS)
- Understand the purpose, general applications, and operating principles of cryo-TEM and cryo-electron tomography
- Understand the purpose and general applications of electron crystallography

Atomic Force Microscopy (AFM)

- Know about the types of imaging possible using AFM
- Understand the general operation of an AFM
- Understand the forces of interaction between tip and sample in contact mode, tapping mode, and non-contact mode AFM
- Know the differences in operation and relative advantages/disadvantages for contact mode, tapping mode, and non-contact mode AFM
- Be aware of the different applications of these AFM modes
- Be aware of possible artifacts arising in the image and from the tip or scanner
- Be aware of related scanning probe methods
 - Scanning tunneling microscopy (STM)
 - Near-field scanning optical microscopy (NSOM)
 - Tip-enhanced Raman spectroscopy (TERS)
 - Photothermal-acoustic AFM-IR

Thermal Analysis

- Understand the applications of thermal analysis
- Understand the operation of a thermogravimetric analyzer (TGA)
- Interpret TGA and derivative thermogravimetry (DTG) curves both qualitatively and quantitatively
- Understand the parameters that affect TGA curves
- Use TGA data to determine sample composition
- Understand how differential thermal analysis (DTA) works
- Interpret DTA data
- Differentiate between exothermic and endothermic physical and chemical processes
- Understand how differential scanning calorimetry (DSC) works
- Interpret DSC data
- Know about hyphenated TGA methods (TGA-IR, TGA-MS, TGA-GC/MS)

Gas Sorption Analysis (focus on physisorption)

- Know about the types of porous materials that can be analyzed by gas sorption analysis and definitions of pore size ranges
 - o micropores
 - o mesopores
 - o macropores
 - o nanopores
- Understand what information can be obtained from gas physisorption analysis
 - specific surface area
 - specific pore volume
 - average pore size
 - pore size distribution
- Know definitions of terms related to sorption
 - Adsorption
 - Absorption
 - Physisorption
 - Chemisorption
- Know about the equipment and the process used for gas sorption analysis
- Understand the steps in the sorption process and relate them to the sorption isotherm
- Know about sample preparation requirements and choice of sample cells
- Know about the classification of isotherm and correlate isotherm shapes to different types of pore structure
- Understand hysteresis loops and how they relate to pore features
- Know about various types of adsorption models
 - o Langmuir
 - o BET
 - o NLDFT
 - o QSDFT
 - Monte-Carlo simulations
- Understand limitations of the BET model for calculating surface areas
- Understand limitations in determining pore size distributions
- Know how to interpret gas sorption data from the literature